

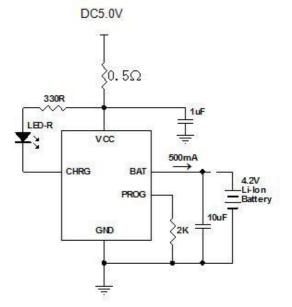
Desktop Charger Management IC

I. Overview

As a constant current/constant voltage desktop charger chip, SL4054 is mainly used for charging for single lithium batteries. With the MOSFET internal structure, it is not needed to connect it with an external sense resistor or an external backward diode.

SL4054 can adjust the charging current automatically in condition of high power and high environment temperature, so as to restrain the temperature of the chip. With the fixed charging voltage of 4.2V, the charging current can be adjusted by an external resistor. When it achieves the floating charging voltage and the charging current declines to 1/10 of the set circuit, SL4054 terminates charging automatically. When the input voltage is removed, SL4054 enters into the low-current mode automatically, and absorbs the current lower than 2uA from the battery. When SL4054 enters into the standby mode, the supply current is lower than 25uA.

SL4054 can also monitor the charging current, with the characteristics of voltage detection and auto-cycled charging; in addition, there is an indicating pin indicating the charging termination state and the input voltage state.


II. Characteristics

- > The programmable charging current as high as 500mA;
- ➢ In no need of external MOSFET, sense resistors or backward diodes;
- Constant current/constant voltage mode operation, with the function of thermal protection;
- > Charging for lithium batteries through the USB port;
- Preset charging voltage with the accuracy of 1%;
- > The current of 20uA in the standby mode;
- The trickle charging voltage of 2.9V
- > The limitation of the surge current with soft start
- ➢ The SOT23-5 package

III. Product Application

- Cellphones, palm computers and MP3 players
- Bluetooth headsets

IV. Application Circuit

V. Diagram of Pins and Function Specifications

PROG VCC 5 4	Symbols	Name	Function description
	1	CHRG	Charging indication end
	2	GND	Ground
	3	BAT	Charging current output end
CHRG GND BAT	4	VCC	Power input end
SOT23-5	5	PROG	External programmable charging current end

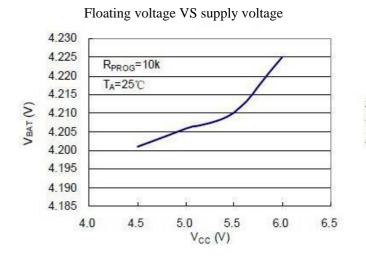
VI. Absolute Maximum Rated Value

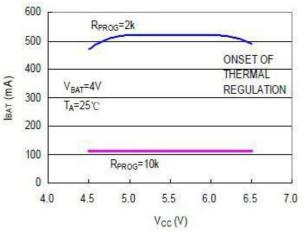
Parameters	Symbols	Rated value	Units
Input supply voltage	V _{CC}	7	V
PROG voltage	Vprog	VCC+0.3	V
BAT voltage	V _{BAT}	7	V
CHRG voltage	VCHRG	7	V
BAT short circuit		Continuous	
Thermal resistance	θ_{JA}	250	°C/W
BAT current	I _{BAT}	500	mA
PROG current	Iprog	800	μΑ
Maximum junction temperature	TJ	110	°C
Storage temperature	Ts	-65 to +125	°C
Welding temperature (no more than 10 seconds)		260	°C

External programming for charging current: PROG (lead foot 5): the constant current charging current setting and the charging current monitoring end. An external resistance from the pin of PROG is connected to the ground end, to program for the charging current. During the pre-charging stage, the voltage of the pin is modulated at 0.1V; during the constant current charging stage, the voltage of the pin is fixed at 1V. In all the modes of the charging state, the charging current can be estimated when measuring the voltage of the pin according to the following formula:

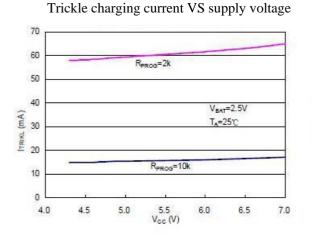
Corresponding Table between the Rprog resistance and the charging current Ibat							
Rprog	Ibat						
Ibat=1000/Rprog							
10K	100mA						
5K	200mA						
3. 3K	300mA						
2.5K	400mA						
2K	500mA						

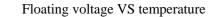
VII. Electrical Characteristics (VIN=5V; TJ=25°C, unless otherwise noted)

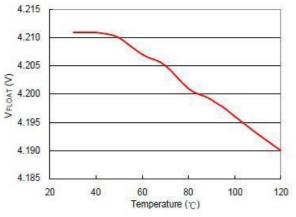

Symbols	Parameters	Cond itions	Min. value	Typical value	Max. value	Units
V _{CC}	Input supply voltage		4.5	5.0	5.5	V
Icc		In the charging mode $^{(3)}$, R _{PROG} =10K		170	500	μA
	Input supply current	Standby mode (charging termination)		70		μA
		Turn-off mode (R _{PROG} not connected, VCC < VBAT, VCC < VUV)		38	50	μΑ
V _{FLOAT}	Adjustable output (floating charging) voltage	I _{BAT} =30 mA, I _{CHRG} =5 mA A: 4.16- 4.24V; B: 4.2-4.28V	4.16	4.20	4.28	v
IBAT		$R_{PROG} = 10k$, current mode	90	110	130	mA
	BAT end current	$R_{PROG} = 2k$, current mode	465	500	535	mA
		VBAT=4.2V, standby mode	0	+/-1	+/-5	μA
		Turn-off mode, RPROG not connected		+/-0.5	+/-5	μA
		Sleep mode, VCC=0V		+/-1	+/-5	μA
I _{TRIKL}	Trickle charging current	VBAT < VTRIKL, RPROG = 10k		15		mA
VTRIKL	Trickle charging threshold voltage	$R_{PROG} = 10k$, V_{BAT} Rising	2.8	2.9	3.0	V
V _{UV}	VCC under voltage locking threshold value			3.4		V
VUVHYS	VCC under voltage locking hysteresis	From VCC Low to High		100		mV
VASD	VCC-VBAT threshold voltage	VCC from low to high		100		mV
		VCC, from high to low		30		mV
I _{TERM}	C/10Z termination current	$RPROG = 10k^{(4)}$		0.1		mA/mA
	threshold value	RPROG = 2k		0.1		mA/mA
VPROG	PROG end voltage	R _{PROG} = 10k, current mode	0.9	1.03	1.1	V
Δ_{VRECHRG}	Battery threshold voltage	VFLOAT - VRECHRG		100		mV
T _{LIM}	Thermal protection temperature			130		°C


t _{ss}	Software start-up time	$I_{BAT} = 0$ to $1000V/R_{PROG}$	100	μs
trechrge	Recharging comparator filtration time	V _{BAT} High to Low	1	ms
t term	Termination comparator filtration time	I _{BAT} Falling Below I _{CHG} /10	1000	μs

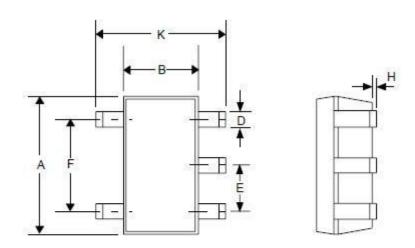
Notes:

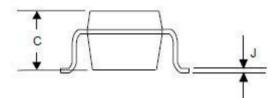

- 1. It may lead to damages to the chip when exceeding the maximum operating range.
- 2. The normal functions cannot be guaranteed when exceeding the limit of the operating parameters of the device.
- 3. The supply current includes the PROG end current (about 100uA), but not the other current transmitted to the battery through the BAT end.
- 4. The charging termination current is generally set as 0.1 time of the set charging current.




VIII. Oscillograph

Charging current VS supply voltage





IX. Dimensional Drawing of Package

SOT23-5

Specification					
Dim	In	ich	mm		
ensio	Min. value	Max. value	Min. value	Max. value	
n					
А	0.110	0.120	2.80	3.05	
В	0.059	0.070	1.50	1.75	
С	0.036	0.051	0.90	1.30	
D	0.014	0.020	0.35	0.50	
Е		0.037		0.95	
F		0.075		1.90	
Н		0.006		0.15	
J	0.0035	0.008	0.090	0.20	
K	0.102	0.118	2.60	3.00	